Skip to main content
Version: Next

Architecture Overview

ageSchemaClient is designed with modularity, type safety, and performance in mind. This document explains the key architectural decisions and design patterns used throughout the library.

Core Principles

1. Type Safety First

  • Full TypeScript support with comprehensive type definitions
  • Compile-time validation of queries and schemas
  • IntelliSense support for better developer experience

2. Apache AGE Integration

  • Direct integration with Apache AGE's unique requirements
  • Handles AGE-specific parameter limitations
  • Optimized for AGE's Cypher implementation

3. Modular Design

  • Loosely coupled components
  • Plugin-based extension system
  • Clear separation of concerns

4. Performance Optimization

  • Connection pooling with proper resource management
  • Batch operations for efficient data loading
  • Query optimization and caching

System Architecture

┌─────────────────────────────────────────────────────────────┐
│ Application Layer │
├─────────────────────────────────────────────────────────────┤
│ AgeSchemaClient │ QueryBuilder │ BatchLoader │ Schema │
├─────────────────────────────────────────────────────────────┤
│ Core Layer │
├─────────────────────────────────────────────────────────────┤
│ Connection Pool │ Transaction │ Extensions │ Utils │
├─────────────────────────────────────────────────────────────┤
│ Database Layer │
├─────────────────────────────────────────────────────────────┤
│ PostgreSQL + Apache AGE │
└─────────────────────────────────────────────────────────────┘

Key Components

AgeSchemaClient

The main entry point that orchestrates all other components:

  • Manages database connections
  • Provides factory methods for builders
  • Handles configuration and lifecycle

QueryBuilder

Fluent API for constructing type-safe Cypher queries:

  • Method chaining for readable query construction
  • Parameter management with AGE-specific handling
  • Query optimization and validation

BatchLoader

Efficient data loading for large datasets:

  • Optimized batch processing
  • Progress reporting and error handling
  • Memory-efficient streaming operations

SchemaManager

Schema definition and validation:

  • JSON Schema-based validation
  • Migration support
  • Comprehensive error reporting

Connection Pool

Manages database connections efficiently:

  • Connection reuse and pooling
  • Resource cleanup and error recovery
  • Health monitoring and reconnection

Design Patterns

1. Builder Pattern

Used extensively for query construction:

const query = client.query()
.match('(p:Person)')
.where({ age: { $gte: 18 } })
.return('p.name')
.orderBy('p.name')
.limit(10);

2. Factory Pattern

For creating specialized instances:

// Client acts as factory for builders
const queryBuilder = client.query();
const batchLoader = client.batch();
const schemaManager = client.schema();

3. Strategy Pattern

For different execution strategies:

// Different strategies for batch loading
const loader = client.batch()
.strategy('memory-optimized') // or 'speed-optimized'
.batchSize(1000);

4. Observer Pattern

For event handling and progress reporting:

loader.on('progress', (progress) => {
console.log(`Loaded ${progress.completed}/${progress.total}`);
});

Data Flow

Query Execution Flow

  1. Query Construction - Builder pattern creates query object
  2. Parameter Processing - AGE-specific parameter handling
  3. Query Optimization - Query analysis and optimization
  4. Execution - Connection pool provides database connection
  5. Result Processing - Type-safe result transformation
  6. Resource Cleanup - Connection returned to pool

Batch Loading Flow

  1. Data Validation - Schema validation if enabled
  2. Batch Preparation - Data chunking and optimization
  3. Parallel Processing - Concurrent batch execution
  4. Progress Tracking - Real-time progress reporting
  5. Error Handling - Graceful error recovery
  6. Completion - Final validation and cleanup

Extension System

Plugin Architecture

interface Extension {
name: string;
version: string;
initialize(client: AgeSchemaClient): void;
destroy(): void;
}

// Register extension
client.use(new MyCustomExtension());

Built-in Extensions

  • Logging Extension - Comprehensive query and performance logging
  • Metrics Extension - Performance metrics and monitoring
  • Cache Extension - Query result caching
  • Validation Extension - Enhanced schema validation

Error Handling Strategy

Error Hierarchy

AgeError (base)
├── ConnectionError
├── QueryError
│ ├── SyntaxError
│ ├── ValidationError
│ └── ExecutionError
├── SchemaError
│ ├── ValidationError
│ └── MigrationError
└── BatchError
├── DataError
└── ProcessingError

Error Recovery

  • Automatic Retry - Configurable retry logic for transient errors
  • Circuit Breaker - Prevents cascade failures
  • Graceful Degradation - Fallback strategies for non-critical operations

Performance Considerations

Connection Management

  • Connection pooling with configurable limits
  • Connection health monitoring
  • Automatic reconnection on failure

Query Optimization

  • Parameter caching and reuse
  • Query plan analysis
  • Batch query execution

Memory Management

  • Streaming for large result sets
  • Configurable memory limits
  • Garbage collection optimization

Security Features

Input Validation

  • SQL injection prevention
  • Parameter sanitization
  • Schema-based validation

Connection Security

  • SSL/TLS support
  • Connection encryption
  • Credential management

Testing Strategy

Unit Testing

  • Comprehensive test coverage
  • Mock-based testing for isolation
  • Property-based testing for edge cases

Integration Testing

  • Real database testing
  • Performance benchmarking
  • Compatibility testing across AGE versions

End-to-End Testing

  • Full workflow testing
  • Error scenario validation
  • Performance regression testing

Next Steps