Architecture Overview
ageSchemaClient is designed with modularity, type safety, and performance in mind. This document explains the key architectural decisions and design patterns used throughout the library.
Core Principles
1. Type Safety First
- Full TypeScript support with comprehensive type definitions
- Compile-time validation of queries and schemas
- IntelliSense support for better developer experience
2. Apache AGE Integration
- Direct integration with Apache AGE's unique requirements
- Handles AGE-specific parameter limitations
- Optimized for AGE's Cypher implementation
3. Modular Design
- Loosely coupled components
- Plugin-based extension system
- Clear separation of concerns
4. Performance Optimization
- Connection pooling with proper resource management
- Batch operations for efficient data loading
- Query optimization and caching
System Architecture
┌─────────────────────────────────────────────────────────────┐
│ Application Layer │
├─────────────────────────────────────────────────────────────┤
│ AgeSchemaClient │ QueryBuilder │ BatchLoader │ Schema │
├─────────────────────────────────────────────────────────────┤
│ Core Layer │
├─────────────────────────────────────────────────────────────┤
│ Connection Pool │ Transaction │ Extensions │ Utils │
├─────────────────────────────────────────────────────────────┤
│ Database Layer │
├─────────────────────────────────────────────────────────────┤
│ PostgreSQL + Apache AGE │
└─────────────────────────────────────────────────────────────┘
Key Components
AgeSchemaClient
The main entry point that orchestrates all other components:
- Manages database connections
- Provides factory methods for builders
- Handles configuration and lifecycle
QueryBuilder
Fluent API for constructing type-safe Cypher queries:
- Method chaining for readable query construction
- Parameter management with AGE-specific handling
- Query optimization and validation
BatchLoader
Efficient data loading for large datasets:
- Optimized batch processing
- Progress reporting and error handling
- Memory-efficient streaming operations
SchemaManager
Schema definition and validation:
- JSON Schema-based validation
- Migration support
- Comprehensive error reporting
Connection Pool
Manages database connections efficiently:
- Connection reuse and pooling
- Resource cleanup and error recovery
- Health monitoring and reconnection
Design Patterns
1. Builder Pattern
Used extensively for query construction:
const query = client.query()
.match('(p:Person)')
.where({ age: { $gte: 18 } })
.return('p.name')
.orderBy('p.name')
.limit(10);
2. Factory Pattern
For creating specialized instances:
// Client acts as factory for builders
const queryBuilder = client.query();
const batchLoader = client.batch();
const schemaManager = client.schema();
3. Strategy Pattern
For different execution strategies:
// Different strategies for batch loading
const loader = client.batch()
.strategy('memory-optimized') // or 'speed-optimized'
.batchSize(1000);
4. Observer Pattern
For event handling and progress reporting:
loader.on('progress', (progress) => {
console.log(`Loaded ${progress.completed}/${progress.total}`);
});
Data Flow
Query Execution Flow
- Query Construction - Builder pattern creates query object
- Parameter Processing - AGE-specific parameter handling
- Query Optimization - Query analysis and optimization
- Execution - Connection pool provides database connection
- Result Processing - Type-safe result transformation
- Resource Cleanup - Connection returned to pool
Batch Loading Flow
- Data Validation - Schema validation if enabled
- Batch Preparation - Data chunking and optimization
- Parallel Processing - Concurrent batch execution
- Progress Tracking - Real-time progress reporting
- Error Handling - Graceful error recovery
- Completion - Final validation and cleanup
Extension System
Plugin Architecture
interface Extension {
name: string;
version: string;
initialize(client: AgeSchemaClient): void;
destroy(): void;
}
// Register extension
client.use(new MyCustomExtension());
Built-in Extensions
- Logging Extension - Comprehensive query and performance logging
- Metrics Extension - Performance metrics and monitoring
- Cache Extension - Query result caching
- Validation Extension - Enhanced schema validation
Error Handling Strategy
Error Hierarchy
AgeError (base)
├── ConnectionError
├── QueryError
│ ├── SyntaxError
│ ├── ValidationError
│ └── ExecutionError
├── SchemaError
│ ├── ValidationError
│ └── MigrationError
└── BatchError
├── DataError
└── ProcessingError
Error Recovery
- Automatic Retry - Configurable retry logic for transient errors
- Circuit Breaker - Prevents cascade failures
- Graceful Degradation - Fallback strategies for non-critical operations
Performance Considerations
Connection Management
- Connection pooling with configurable limits
- Connection health monitoring
- Automatic reconnection on failure
Query Optimization
- Parameter caching and reuse
- Query plan analysis
- Batch query execution
Memory Management
- Streaming for large result sets
- Configurable memory limits
- Garbage collection optimization
Security Features
Input Validation
- SQL injection prevention
- Parameter sanitization
- Schema-based validation
Connection Security
- SSL/TLS support
- Connection encryption
- Credential management
Testing Strategy
Unit Testing
- Comprehensive test coverage
- Mock-based testing for isolation
- Property-based testing for edge cases
Integration Testing
- Real database testing
- Performance benchmarking
- Compatibility testing across AGE versions
End-to-End Testing
- Full workflow testing
- Error scenario validation
- Performance regression testing
Next Steps
- Connection Management - Deep dive into connection handling
- Query Processing - Understanding query execution
- Extension Development - Building custom extensions