Skip to main content

Getting Started

This guide will help you install, configure, and start using agnt with your AI coding assistant.

Prerequisites

  • Go 1.24.2 or later (for building from source)
  • An MCP-compatible AI assistant (Claude Code, Cursor, etc.)

Installation

The easiest way to install agnt is through the Claude Code marketplace:

# Install from marketplace (automatically configures MCP)
claude mcp add agnt --plugin agnt@agnt-marketplace

This single command downloads the latest agnt binary and registers it as an MCP server.

From Go

go install github.com/standardbeagle/agnt/cmd/agnt@latest

From Source

# Clone the repository
git clone https://github.com/standardbeagle/agnt.git
cd agnt

# Build the binary
make build

# Or install to $GOPATH/bin
make install

Verify Installation

agnt --version
# agnt version 0.7.10

Configuration

Claude Code CLI

# Register as MCP server
claude mcp add agnt -s user -- agnt mcp

Manual Configuration

Add agnt to your Claude Code configuration (claude_desktop_config.json):

{
"mcpServers": {
"agnt": {
"command": "agnt",
"args": ["mcp"]
}
}
}

Other MCP Clients

agnt communicates over stdio. Configure your MCP client to spawn agnt mcp and communicate over stdin/stdout.

Project Configuration (.agnt.kdl)

Create a .agnt.kdl file in your project root to auto-start scripts and proxies:

// Scripts to run automatically
scripts {
dev {
run "npm run dev"
autostart true
}
}

// Reverse proxies for browser debugging
proxies {
frontend {
target "http://localhost:3000"
autostart true
}
}

// Browser notifications when AI responds
hooks {
on-response {
toast true
indicator true
}
}

// Toast notification settings
toast {
duration 4000
position "bottom-right"
max-visible 3
}

Run /setup-project in Claude Code to interactively generate this configuration.

Script Options:

  • run - Shell command (e.g., "npm run dev")
  • command / args - Command with arguments
  • autostart - Start automatically (true/false)
  • env - Environment variables block
  • cwd - Working directory
  • url-matchers - Patterns for URL auto-detection

Proxy Options:

  • target - Full target URL
  • port / host - Shorthand for localhost proxies
  • script - Link to a script for URL auto-detection
  • autostart - Start automatically
  • max-log-size - Max log entries (default: 1000)

Common Framework URL Matchers:

Frameworkurl-matchers Pattern
Next.js / Vite"(Local|Network):\\s*{url}"
Wails"DevServer URL:\\s*{url}"
Astro"Local\\s+{url}"
Jekyll"Server address:\\s*{url}"
Hugo"Web Server.*available at {url}"

Quick Start

Once configured, your AI assistant has access to all agnt tools. Here's a typical workflow:

1. Detect Your Project

detect {path: "."}

Returns your project type, package manager, and available scripts:

{
"type": "node",
"package_manager": "pnpm",
"name": "my-app",
"scripts": ["dev", "build", "test", "lint", "typecheck"]
}

2. Start Your Dev Server

run {script_name: "dev"}

Starts the dev server in the background. The AI can now:

  • Check status: proc {action: "status", process_id: "dev"}
  • View output: proc {action: "output", process_id: "dev", tail: 50}
  • Stop it: proc {action: "stop", process_id: "dev"}

3. Set Up Proxy for Browser Superpowers

proxy {action: "start", id: "app", target_url: "http://localhost:3000"}

The proxy auto-assigns a stable port based on the target URL (check listen_addr in response). The proxy:

  • Logs all HTTP requests and responses
  • Captures frontend JavaScript errors
  • Collects performance metrics
  • Injects the window.__devtool API with 50+ diagnostic primitives
  • Shows a floating indicator for browser-to-agent messaging

4. Debug Frontend Issues

Query captured data:

// View recent HTTP traffic
proxylog {proxy_id: "app", types: ["http"], limit: 20}

// Check for JavaScript errors
proxylog {proxy_id: "app", types: ["error"]}

// See page load performance
proxylog {proxy_id: "app", types: ["performance"]}

Execute browser commands:

// Take a screenshot
proxy {action: "exec", id: "app", code: "window.__devtool.screenshot('debug')"}

// Inspect an element
proxy {action: "exec", id: "app", code: "window.__devtool.inspect('#problem-button')"}

// Run accessibility audit
proxy {action: "exec", id: "app", code: "window.__devtool.auditAccessibility()"}

// Check text fragility
proxy {action: "exec", id: "app", code: "window.__devtool.checkTextFragility()"}

// Check responsive risks
proxy {action: "exec", id: "app", code: "window.__devtool.checkResponsiveRisk()"}

Example Session

Here's a complete debugging session:

User: "My app has a layout bug on the dashboard page"

AI: Let me help debug that. First, I'll check your project setup.

[detect {path: "."}]
→ Node.js project with pnpm, scripts: dev, build, test

AI: I'll start the dev server and set up debugging.

[run {script_name: "dev"}]
→ Dev server started on port 3000

[proxy {action: "start", id: "app", target_url: "http://localhost:3000"}]
→ Proxy running on port 45849

AI: Please open http://localhost:45849/dashboard in your browser.
Once loaded, I'll analyze the layout.

[User navigates to the page]

[proxy {action: "exec", id: "app", code: "window.__devtool.diagnoseLayout()"}]
→ Found 2 overflow issues, 1 stacking context problem

[proxy {action: "exec", id: "app", code: "window.__devtool.checkTextFragility()"}]
→ Found text with long words that may overflow on mobile

AI: I found layout issues. Let me check responsive risks.

[proxy {action: "exec", id: "app", code: "window.__devtool.checkResponsiveRisk()"}]
→ 3 elements have fixed widths that break on mobile

AI: The dashboard has several issues:
1. Text with long words needs word-break
2. Fixed-width elements need max-width: 100%
3. Some touch targets are too small

Should I fix these issues?

Using the Floating Indicator

When you browse through the proxy, you'll see a floating bug icon. Click it to:

  • Send messages directly to your AI agent
  • Take screenshots of selected areas
  • Run audits from a dropdown menu
  • Open sketch mode for wireframing

Next Steps